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Abstract

Repeated games with imperfect private monitoring have a wide
range of applications, but a complete characterization of all equilibria
in this class of games has yet to be obtained. The existing literature
has identified a relatively tractable subset of equilibria. The present
paper introduces the notion of weakly belief-free equilibria for repeated
games with imperfect private monitoring. This is a tractable class
which subsumes, as a special case, a major part of the existing liter-
ature (the belief-free equilibria), and it is shown that this class can
outperform the equilibria identified by the previous work.
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1 Introduction

Repeated games with imperfect private monitoring have a wide range of
applications, but a complete characterization of all equilibria in this class
of games has yet to be obtained. The existing literature has identified a
relatively tractable subset of equilibria. Since an equilibrium in a repeated
game represents a self-enforcing agreement in a long term relationship, the
current state of our knowledge implies that we are still trying to understand
how much cooperation can be sustained when agents interact over time
under private monitoring.

The present paper demonstrates a new way to construct equilibria in re-
peated games with imperfect private monitoring, which can outperform the
equilibria identified by the previous literature. Specifically, I generalize the
notion of belief-free equilibria (Ely and Valimaki (2002) and Ely, Horner,
and Olszewski (2005) EHO hereafter), which has played a major role in the
existing literature, and show that the resulting weakly belief-free equilibria
continue to possess a nice recursive structure. I then apply this concept to
a repeated prisoners’ dilemma game with private monitoring and construct
a simple equilibrium which outperforms the equilibria identified by previous
work. The superior performance is due to the fact that the equilibrium
partially embodies the essential mechanism used to achieve efficiency in re-
peated games with imperfect monitoring (the transfer of continuation payoffs
across players, as in Fudenberg, Levine, and Maskin (1994)). In addition,
the equilibrium is in very simple pure strategies, and it is robust in the sense
that players’ actions are always strict best replies. This is in contrast to
belief-free equilibria, which rely on judiciously chosen mixed strategies and
provide only weak incentive to follow the equilibrium actions1.

A repeated game is a dynamic game where the same set of agents play the
same game (the stage game) over an infinite time horizon. Economists and
game theorists have successfully employed this class of models to examine
how self-interested agents manage to cooperate in long-term relationships.
A repeated game is said to have (imperfect) private monitoring if agents’
actions are not directly observable and each agent receives imperfect private
information (a private signal) about the opponents’ actions. This class of
games has a number of important potential applications. A leading exam-
ple is a price competition game where firms may offer secret price cuts to
their customers. In such a situation, each firm’s sales level serves as the

1 Bhaskar (2000) argues that this is a problematic feature, because such an equilibrium
may not be purified (in the sense of Harsanyi) by a plausible payoff purturbation. See
detailed discussion at the end of Section 5.
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private signal, which imperfectly reveals the rivals’ pricing behavior. De-
spite the wealth of potential applications, however, this class of games is not
fully understood2. This stands in sharp contrast to the case where play-
ers share the same information (repeated games with perfect or imperfect
public monitoring), where the set of equilibria are fully characterized and
efficient outcomes can be sustained under a mild set of conditions (the Folk
theorems) 3. The main difficulty in the private monitoring case comes from
the fact that players have diverse information about each other’s behavior.

In the perfect or public monitoring case, players always share a mutual
understanding about what they are going to do in the future. Therefore,
it is easy to check if a given set of strategies specifies mutual best replies
after any history. In the private monitoring case, however, each player
has to draw statistical inferences about the opponents’ future action plans,
because they depend on an unobservable history of the opponents’ private
signals. The inferences quickly become complicated over time, even if players
adopt relatively simple strategies. Hence, it is not easy to find a profile of
strategies that are always best replies to each other, after any history. In
other words, constructing an equilibrium is in general a quite demanding
task in repeated games with private monitoring (see Kandori (2002)). As a
result, the complete characterization of all equilibria in this class of games is
still unknown. The existing literature has only identified a rather tractable
subset of equilibria.

To deal with the aforementioned difficulty, the existing literature has
adopted two alternative approaches. One is the belief-based approach, which
looks at the case where the inference problem is tractable. This literature
originally dealt with special examples (see, for example, Sekiguchi (1997),
Bhaskar and van Damme (2002), Bhaskar and Obara (2002)), or the case
where the monitoring structure is close to public monitoring (i.e., play-
ers’ private signals are almost perfectly correlated: see Mailath and Morris
(2002)). Mailath and Morris made an important observation that the sta-
tistical inference problem can be simplified to some extent if strategies have

2 If communication is allowed, it is known that the Folk theorm holds in private mon-
itoring repeated games (Compte (1998) and Kandori and Matsushima (1998)). Recent
literature, including the present article, mainly explore the possibility of cooperation un-
der no communication. This is important because in a major applied area (collusion)
communication is explicitly prohibited by anti-trust laws.

3See the self-generation condition of Abreu, Pearce and Stacchetti (1990), and the Folk
theorems of Fudenberg and Maskin (1986) for the public monitoring case and Fudenberg,
Levine, and Maskin (1994) for the imperfect public monitoring case. A survey of repeated
game literature can be found in Kandori (2008) (for an accessible overview), and in Mailath
and Samuelson (2006) (for a comprehensive exposition).
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finite memories. The recent paper by Phelan and Skrzypacz (2008) pro-
vided a general computational method that can be employed to check the
equilibrium conditions when strategies have finite memories. In terms of
deriving general analytical results however, the second approach, the belief-
free approach, has been more successful thus far. This approach bypasses
the complexity of inference altogether by constructing an equilibrium where
players do not have to draw any statistical inferences.

Let us denote player i’s action and private signal in period t by ai(t) and
ωi(t). Note that, in general, each player i’s continuation strategy at time
t+ 1 is determined by his private history hti = (ai(1),ωi(1), ..., ai(t),ωi(t)).
The belief-free approach constructs an equilibrium where player i’s continua-
tion strategy is a best reply to the opponents’ continuation strategies for any
realization of opponents’ histories, ht−i = (a−i(1),ω−i(1), ..., a−i(t),ω−i(t)),
thereby making player i’s belief over ht−i irrelevant. Such an equilibrium is
called a belief-free equilibrium (defined formally by EHO). The core of this
approach was provided by the influential works of Piccione (2002), Obara
(1999), and Ely and Valimaki (2002). This idea was later substantially gen-
eralized by Matsushima (2004), EHO (2005), Horner and Olszewski (2006),
and Yamamoto (2007). EHO show that the set of belief-free equilibria can
be characterized by a simple recursive method similar to that of Abreu,
Pearce and Stacchetti (1990).

In the present paper, I propose a weakening of the belief-free conditions,
leading to a set of equilibria which are still tractable and are capable of sus-
taining a larger payoff set. Note that the belief-free conditions imply that,
at the beginning of period t+ 1, player i does not have to form beliefs over
ht−i = (a−i(1),ω−i(1), ..., a−i(t),ω−i(t)). In contrast, I require that player
i does not need to form beliefs over (a−i(1),ω−i(1), ..., a−i(t)), omitting the
last piece of information ω−i(t) from the belief-free requirement. This says
that player i does not have to know the opponents’ histories up to the previ-
ous actions. However, player i does need to understand correctly that, for
each possible action profile a(t), the private signals in the previous period
are distributed according to the given monitoring structure p(ω(t)|a(t)) (the
joint distribution of private signals (ω1(t), ...,ωN (t)) = ω(t) given action
profile (a1(t), ..., aN(t)) = a(t)). I call equilibria with this property weakly
belief-free equilibria.

To show that weakly belief-free equilibria have a recursive structure, I
depart from the tradition of looking at the continuation payoff sets. In
the perfect or imperfect monitoring cases (Abreu, Pearce, and Stacchetti
(1990)) as well as in the belief-free approach in the private monitoring case
(see EHO (2005)), it has been a common practice to keep track of the set
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of continuation payoffs to exploit the recursive structure. In contrast, I
analyze what I call reduced games and examine their recursive structure. A
reduced game at time t is a game with the same set of players and actions
as in the stage game. Roughly speaking, a reduced game payoff is a current
payoff for an arbitrary action profile plus the future equilibrium continuation
payoff. Formally, the reduced game payoff to player i under action profile
a is defined to be i’s continuation payoff when (i) players adopt the current
continuation strategies and (ii) the current action profile is a. When players
use one-period memory strategies, current actions fully specify the continu-
ation strategies, so that the reduced game payoff to player i is represented as
a simple function uti(a). In this case, the weakly belief-free equilibria can be
characterized by the property that players always play a correlated equilib-
rium of the reduced game after any history. In general, when strategies do
not necessarily have one-period memories, players’ continuation strategies
depend on the past history as well as the current action. Let θi be a state
variable which summarizes player i’s private history. In the general case,
a reduced game payoff to player i is represented as vti(a|θ1, ..., θN ), and the
weakly belief-free equilibria are characterized by the property that players
always play a Bayesian correlated equilibrium of the reduced game.

The paper is organized as follows. Section 2 presents the basic model
and defines weakly belief-free equilibria. Then, weakly belief-free equilibria
are characterized by a recursive method, for the one-period memory case
(Section 3) and for the general case (Section 4). Section 5 presents an
example of a one-period memory weakly belief-free equilibrium which out-
performs the belief-free equilibria. This example ‘embeds’ the chicken game
as the reduced game in the repeated prisoners’ dilemma. Section 6 provides
a brief discussion about the advantage of weakly-belief equilibria over belief-
free equilibria, and Section 7 concludes. Appendices A - C contain technical
details of the example in Section 5.

2 The Model

Let us begin by defining the stage game. Let Ai be the (finite) set of
actions for player i = 1, ..., N and define A = A1 × · · · × AN . I primarily
consider the case with imperfect private monitoring, where each player i
observes her own action ai and private signal ωi ∈ Ωi (my formulation,
however, accommodates the imperfect public monitoring case: see footnote
4). We denote ω = (ω1, ...,ωN) ∈ Ω = Ω1 × · · · ×ΩN and let p(ω|a) be the
probability of private signal profile ω given action profile a (we assume that
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Ω is a finite set). It is also assumed that no player can infer which actions
were taken (or not taken) for sure; that is, I suppose that given any a ∈ A,
each ωi ∈ Ωi occurs with positive probability.4 We denote the marginal
distribution of ωi by pi(ωi|a). Player i’s realized payoff is determined by
her own action and signal, and denoted πi(ai,ωi). Hence her expected payoff
is given by

gi(a) =
X
ω∈Ω

πi(ai,ωi)p(ω|a).

This formulation ensures that the realized payoff πi conveys no more infor-
mation than ai and ωi do5. The stage game is to be played repeatedly over
an infinite time horizon t = 1, 2, ..., and each player i’s discounted payoff
is given by

P∞
t=1 gi(a(t))δ

t−1, where δ ∈ (0, 1) is the discount factor and
a(t) ∈ A is the action profile at time t. A mixed action for player i is
denoted by αi ∈ ∆(Ai), where ∆(Ai) is the set of probability distributions
over Ai. With an abuse of notation, we denote the expected payoff and
signal distribution under a mixed action profile α = (α1, ...,αN ) by gi(α)
and p(ω|α) respectively.

A private history for player i up to time t is the record of player i’s past
actions and signals, hti = (ai(1),ωi(1), ..., ai(t),ωi(t)) ∈ Ht

i ≡ (Ai × Ωi)t.
To determine the initial action of each player, we introduce a dummy initial
history (or null history) h0i and let H

0
i be a singleton set {h0i }. A pure

strategy si for player i is a function specifying an action after any history:
formally, si : Hi → Ai, where Hi = ∪t≥0Ht

i . Similarly, a (behaviorally)
mixed strategy for player i is denoted by σi : Hi → ∆(Ai).

A continuation strategy for player i after private history hti is denoted
by σi[h

t
i], defined as (i) σi[h

t
i](h

0
i ) = σi(h

t
i) and (ii) for any other history

hi 6= h0i , σi[hti](hi) = σi(h
t
ihi), where h

t
ihi represents a history obtained by

attaching hi after hti. For any given strategy profile σ = (σ1, ...,σN ) and
any private history profile ht = (ht1, ..., h

t
N), let BR(σ−i[h

t
−i]) be the set of

best reply strategies for player i against σ−i[ht−i]. EHO (2005) defined a
belief-free strategy profile as follows.

4 I do not require that the joint distribution of the private signals has full support. Our
assumption accomodates the case of imperfect public monitoring, where all players receive
the same signal with probability one (hence the event where players receive different signals
has zero probability).

5 In the secret price cutting example, this is satisfied because the realized profit πi of
firm i depends on its price ai and sales ωi. Also note that this formulation is without loss
of generality, because we can formally incorporate the realized payoff as a part of private
signal: Assume that player i observes (ωi,πi), and define this vector to be the private
signal of player i. Then, my assumption is satisfiead as πi(ai, (ωi,πi)) = πi.
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Definition 1 A strategy profile σ is belief-free if for any ht and i, σi[hti] ∈
BR(σ−i[ht−i]).

Note that the above requirement implies that the current continuation
strategy for a player is a best reply for any realization of private histories
of other players. In this sense, in a belief-free equilibrium players never
need to compute beliefs over opponents’ private histories. For the readers
who are not familiar with belief-free equilibria, Section 6 provides a brief
review of how one can construct such an equilibrium. EHO (2005) showed
that belief-free equilibria are tractable in the sense that a recursive method
similar to that of Abreu, Pearce and Stacchetti (1990) can be employed to
obtain a complete characterization of belief-free equilibrium payoffs.

In the present paper, I propose a weakening of the belief-free conditions,
leading to a set of equilibria which are still tractable and manage to sustain
a larger payoff set. Note that the belief-free conditions imply that, at
the beginning of period t + 1, player i does not have to form beliefs over
ht−i = (a−i(1),ω−i(1), ..., a−i(t),ω−i(t)). In contrast, I require that player
i does not need to form beliefs over (a−i(1),ω−i(1), ..., a−i(t)), omitting the
last piece of information ω−i(t) from the belief-free requirement.

Now let us formalize the above idea. Fix any strategy profile σ and
history profile ht = (a(1),ω(1), ..., a(t),ω(t)). At the end of period t, player
i has observed his private history hti = (ai(1),ωi(1), ..., ai(t),ωi(t)). Given
this information, what would player i’s belief over the opponents’ continu-
ation strategies be, if he knew the opponents’ private histories up to the
actions in the previous period (a−i(1),ω−i(1), ..., a−i(t))? This is given by
the probability mixture of continuation strategy profiles of the opponents,

σ−i[a−i(1),ω−i(1), ..., a−i(t),ω
0
−i(t)] for ω0−i(t) ∈ Ω−i,

each of which is chosen with conditional probability p−i(ω0−i(t)|a(t),ωi(t)).
Let us denote the probability distribution thus defined over the opponents’
continuation strategies by σ−i[a−i(1),ω−i(1), ..., a−i(t)|hti].6

6Formally, σ−i[a−i(1),ω−i(1), ..., a−i(t)|hti] is a joint probability distribution over
player i’s opponents’ continuation pure strategies ((sj)j 6=i), and it is given by

ω0−i(t)
j 6=i

σj [aj(1),ωj(1), ..., aj(t),ω
0
j(t)](sj)pj(ω

0
j(t)|a(t),ωi(t)), where

σj [aj(1),ωj(1), ..., aj(t),ω
0
j(t)](sj) denotes the probability that player j’s behav-

iorally mixed continuation strrategy σj [aj(1),ωj(1), ..., aj(t),ω
0
j(t)] selects the pure

continuation strategy sj . Note that σ−i[a−i(1),ω−i(1), ..., a−i(t)|hti] represents a
correlated strategy profile of the opponents, when N ≥ 3. Below, we assume that the
best reply correspondence BRi is defined over the domain of correlated strategy profiles
of the opponents.
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Definition 2 A strategy profile σ is weakly belief-free if for any ht =
(a(1),ω(1), ..., a(t),ω(t)) and i, σi[hti] ∈ BR(σ−i[a−i(1),ω−i(1), ..., a−i(t)|hti]).

This definition says that, under a weakly belief-free strategy profile,
player i in period t + 1 does not have to know the opponents’ histories up
to the previous actions (a−i(1),ω−i(1), ..., a−i(t)) to calculate his optimal
continuation strategy. He may, however, need to form some beliefs over
the previous signals ω−i(t). More precisely, he may need to understand
correctly that, for each possible action profile a(t), the private signals in the
previous period are distributed according to p(ω(t)|a(t)). In the subsequent
sections, I characterize the set of weakly belief-free equilibria.

3 One-Period Memory

In this section, we consider weakly belief-free equilibria with one-period
memory7. This is a particularly tractable class which subsumes a major
segment of the belief-free equilibria identified by Ely and Valimaki (2002)
and EHO (2005) as a special case. We say that player i’s strategy has one-
period memory if it specifies the current (mixed) action αi(t) to be taken
depending only on ai(t− 1) and ωi(t− 1).

Definition 3 A one-period memory strategy for player i is defined by
an initial (mixed) action αi(1) and one-period memory transition rules
mti : Ai × Ωi → ∆(Ai), t = 1, 2, ... The probability of ai(t + 1) given ai(t)
and ωi(t) under mti is denoted by

mt
i(ai(t+ 1)|ai(t),ωi(t)).

The set of all one-period memory transition rules for player i is denoted by
Mi.

Under a one-period memory strategy profile, at each moment t, the cur-
rent action profile a(t) determines the continuation play (independent of
previous history)8. Hence, we can define uti(a(t)) as the (average) expected
continuation payoff to player i. The function uti(a(t)) can be regarded as
a payoff in a game which has the same action sets as the stage game. Let

7Deviations to general strategies (not neccessarily with one-period memory) are al-
lowed, so that we are not weakening the usual equilibrium conditions.

8Continuation strategies after t+1 are determined, under a one-period memory strategy
profile, by a(t) and ω(t). As the latter is generated by p(ω(t)|a(t)), a(t) alone determines
the contingent action plans of players after t+ 1.
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us call the game defined by (uti, Ai)i=1,...,N a reduced game. This en-
ables us to view a repeated game as a sequence of reduced games, and I will
analyze its recursive structure. This is in contrast to the previous litera-
ture (Abreu, Pearce and Stacchetti (1990) and EHO (2005)), which views
a repeated game as a sequence of continuation payoff sets and exploits its
recursive structure9.

Before stating my characterization, it is necessary to define a couple of
concepts. In the equilibria I am going to construct, at each moment of time,
players are effectively playing a correlated equilibrium of the reduced game,
where the private signals ω = (ω1, ...,ωN) from the previous period play
the role of the correlation device. To describe such a situation, consider the
case where (i) ω = (ω1, ...,ωN) is realized according to a certain probability
distribution, after which each player i observes ωi, and (ii) depending on
ωi, player i chooses an action ai (possibly by using a mixing device). This
process generates a joint distribution over (a,ω), and let us denoted it by
q(a,ω). I say q(a,ω) is a correlated equilibrium of reduced game u, if play-
ers are taking mutual best replies. In contrast to the standard definition
of correlated equilibrium, which only considers a joint distribution over ac-
tions (interpreted as "recommendations"), the definition here considers the
case where each player receives a recommended action and some additional
information, ωi.

Formally, I say that a probability distribution q on A×Ω is a correlated
equilibrium of game u : A→ RN , when

∀i∀ai∀ωi∀a0i
X

a−i,ω−i

ui(a)q(a,ω) ≥
X

a−i,ω−i

ui(a
0
i, a−i)q(a,ω). (1)

This admits the same interpretation as the standard condition for correlated
equilibrium with respect to actions. Consider the marginal distribution of
(ai,ωi), given by qi(ai,ωi) ≡

P
a−i,ω−i

q(a,ω). If (ai,ωi) does not arise
with positive probability (i.e., qi(ai,ωi) = 0), then the above inequality is
automatically satisfied (as the both sides are equal to 0). Otherwise dividing
both sides of inequality (1) by qi(ai,ωi) reduces it to

E [ui(ai,ea−i)|ai,ωi] ≥ E £ui(a0i,ea−i)|ai,ωi¤ ,
9The concept of reduced games is not new. It is basically the same as the function E

in Abreu, Pearce and Staccetti (1991) in the context of public monitoring repeated games,
and Mailath and Samuelson’s (2006) texbook employs the same concept for repeated games
with any monitoring structure. The contribution of the present paper is to show that this
concept is particularly useful in analyzing a certain class of equilibria in repeated games
with private monitoring.
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where the expectation is taken with respect to the conditional probability
Pr(a−i|ai,ωi) =

P
ω−i

q(a,ω)/qi(ai,ωi). In our situation where each player
receives a recommended action and some additional information ωi, con-
dition (1) thus ensures that player i has an incentive to follow the recom-
mended action ai. The set of correlated equilibria of game u is denoted by
C(u):

C(u) ≡ {q ∈ ∆(A×Ω)| Condition (1) holds.} , (2)

where ∆(A×Ω) is the set of probability distribution over A×Ω. A standard
result for the set of correlated equilibria carries over to our formulation:
From (1), we can see that C(u) is convex. As it plays a vital role in what
follows, I state it here.

Lemma 4 For any u : A→ RN , C(u) is convex.

Now consider one-period memory transition rules m = (m1, ...,mN ) ∈
M = M1 × · · · ×MN . Given such a profile and our monitoring structure
p(ω|a), the probability of (a(t+1),ω(t)) given a(t) is determined as follows.
This will play the role of the correlation device for the reduced game at time
t.

Definition 5 The action-signal distribution given a(t) under one-period
memory strategy profile m is defined by

qm(a(t+ 1),ω(t)|a(t)) ≡
NY
i=1

mi(ai(t+ 1)|ai(t),ωi(t))p(ω(t)|a(t)). (3)

Its marginal distribution of a(t + 1) (the probability of a(t + 1) given a(t)
under m) is defined by

pm(a(t+ 1)|a(t)) ≡
X

ω(t)∈Ω
qm(a(t+ 1),ω(t)|a(t)). (4)

Now I am ready to introduce my equilibrium conditions.

Definition 6 A set of reduced games U ⊂ {u|u : A → RN} is self-
generating if, for any u ∈ U , there exist v ∈ U and a one-period memory
transition rule profile m ∈M such that

∀a u(a) = (1− δ)g(a) + δ
X
a0∈A

v(a0)pm(a0|a) (5)

and
∀a qm(·, ·|a) ∈ C(v), (6)

where C(u), qm and pm are defined by (2), (3), and (4).
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This definition can be interpreted as follows. Equation (5) shows that
a given reduced game payoff profile u can be decomposed into a current
payoff profile g and the continuation payoff profile v. Condition (6) is the
key requirement, which shows that players are always playing a correlated
equilibrium of the continuation reduced game v, after any action profile is
played today. Now let us say that the reduced game u is generated by
(continuation) reduced game v, if conditions (5) and (6) are satisfied. The
definition above says that a set of reduced games U is self-generating if any
reduced game in this set is generated by another (continuation) reduced
game in the same set. Note that any weakly belief-free equilibrium with
one period memory is associated with a self-generating set U = {u1, u2, ...},
where ut is the reduced game in period t, which is generated by ut+1.

Now we show that the weakly belief-free equilibrium payoffs with one-
period memory can be characterized by the Nash equilibria associated with
a self-generating set of reduced games. Let N(u) be the Nash equilibrium
payoff set associated with game u. Then, one obtains the following complete
characterization of one-period memory belief-free equilibria, which is similar
to Abreu, Pearce and Stacchetti (1990). Note, however, that the present
recursive characterization is given in terms of reduced games, in contrast to
continuation payoff sets in Abreu, Pearce and Staccetti.

Theorem 7 Let U ⊂ {u|u : A→ RN}be self-generating and bounded in the
sense that there exists K > 0 such that |ui(a)| < K for all i, u ∈ U, and a.
Then, any point in

N(U) ≡
[
u∈U

N(u)

can be achieved as the average payoff of a one-period memory weakly belief-
free sequential equilibrium. The set of all one-period memory weakly belief-
free sequential equilibrium payoff profiles is given by N(U∗), where U∗ is the
largest (in the sense of set inclusion) bounded self-generating set.

Note that a one-period memory weakly belief-free sequential equilibrium
has the following features; (i)for each player i, the distribution of ai(t) de-
pends only on ωi(t − 1) and ai(t − 1) in each stage t > 1 and (ii) players
always play a correlated equilibrium of the repeated game after any history
(on and off the path of play). Also note that, if a (partial) correlation de-
vice is available at the beginning of the repeated game, the set of one-period
memory belief-free sequential equilibrium is given by C(U) ≡

S
u∈U C(u)

(i.e., the correlated equilibria associated with reduced games u ∈ U).

11



Proof. For any u ∈ U , repeated application of (5) induces a sequence
of reduced games {ut} and one-period memory strategies {mt} that satisfy

∀a ut(a) = (1− δ)g(a) + δ
X
a0∈A

ut+1(a0)pm
t
(a0|a),

and
∀a qm

t
(·, ·|a) ∈ C(ut+1), (7)

for t = 1, 2, ... with u1 = u. Hence, for any T (> 2), we have

u(a) = (1− δ)

(
g(a) +E

"
T−1X
t=2

g(a(t))δt−1 + uT (a(t+ 1))δT−1

¯̄̄̄
¯ a
#)

.

The expectation E[·|a] presumes that the distribution of a(t+1) given a(t)
is pm

t
(a(t+1)|a(t)) with a(1) = a. As uT is bounded, we can take the limit

T →∞ to get

u(a) = (1− δ)

(
g(a) +E

" ∞X
t=2

g(a(t))δt−1

¯̄̄̄
¯ a
#)

. (8)

Hence u(a) can be interpreted as the average payoff profile when the players
choose a today and follow one-period memory strategy profilemt, t = 1, 2, ....
Let α be a (possibly mixed) Nash equilibrium of game u, and let σ be
the strategy where α is played in the first period and the players follow
mt, t = 1, 2, .... By construction σ achieves an average payoff of u(α)
(the expected payoff associated with α), and we show below that it is a
sequential equilibrium because after any history no player can gain from
a one-shot unilateral deviation10. In the first period, no one can gain by
a one-shot unilateral deviation from α because it is a Nash equilibrium of
game u. For stage t > 0, take any player i and any private history for her
(a0i (1), , , , a

0
i (t− 1),ω0i (1), ...,ω0i (t− 1)). Let μ(a(t− 1)) be her belief about

last period’s action profile given her private history. Then, her belief about
the current signal distribution is

q(a(t),ω(t)) =
X

a(t−1)∈A
qm

t−1
(a(t),ω(t)|a(t− 1))μ(a(t− 1)).

(Note that under σ other players’ continuation strategies do not depend on
their private histories except for their current signals.) Let v ∈ U be the

10The standard dynamic programming result shows that this implies that no (possibly
infinite) sequence of unilateral deviations is profitable.
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continuation payoff in stage t (including stage t’s payoff). Then, condition
(7) for self-generation, qm(·, ·|a) ∈ C(v) for all a, and the convexity of the
correlated equilibrium set C(v) imply q ∈ C(v). This means that player i
cannot gain by one-shot unilateral deviation at this stage.

Conversely, given any one-period memory weakly belief-free sequential
equilibrium, one can calculate a sequence of reduced games ut, t = 1, 2, ....
It is straightforward to check that U 0 ≡ {ut|t = 1, 2, ...} is a self-generating
set bounded by K ≡ maxi,a |gi(a)|. Since a union of self-generating sets
bounded by K is also self-generating and bounded by K, we conclude that
the set of all one-period memory weakly belief-free sequential equilibrium
payoff profiles is given by N(UK), where UK is the largest (in the sense
of set inclusion) self-generating set bounded by K. Now consider any self-
generating set U which is bounded (not necessarily by K). The first part
of this proof shows that U is actually bounded by K (as any u ∈ U is an
average payoff profile of the repeated game). This implies UK = U∗, which
completes the proof.

4 General Strategies

In this section, I consider weakly belief-free equilibria in fully general strate-
gies (i.e., strategies which do not necessarily have one-period memories).
For the purpose of this section, it is convenient to represent a strategy in
the following way. For each player i, we specify

• a set of states Θi

• an initial state θi(1) ∈ Θi

• (mixed) action choice for each state, ρi : Θi → ∆(Ai)

• state transition τ i : Θi × Ai × Ωi → ∆(Θi). This determines the
probability distribution of the next state θi(t+1) based on the current
state θi(t), current action ai(t), and current private signal ωi(t).

I call msi ≡ (Θi, θi(1), ρi, τ i) a machine strategy. All strategies can
trivially be represented as a machine strategy, when we set Θi equal to
the set of all histories for player i: Θi = Hi.11 The action choice and
transition rule are assumed to be time-independent, but this is without loss
11 In this case, the transition rule τ i is deterministic: given θi(t) = hi(t), ai(t), and

ωi(t), τ i assigns probability one to θi(t+1) = (θi(t), ai(t),ωi(t)). The initial state should
be the null history θi(t) = h

0
i .
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of generality. We can always include the current time in the state variable
θi (as θi = (bθi, t)).

Under a machine strategy profilems = (msi, ...,msN ), if we fix a current
state profile θ(t) ∈ Θ ≡ Θ1 × · · · × ΘN , continuation strategies are fully
specified. For each ms, we can compute the continuation payoff to player
i, when (i) all players’ continuation strategies are specified by ms given
θ(t) and (ii) the current action profile is a(t). Denote this by vi(a(t)|θ(t)).
Note well that the function vi is defined over all a(t), some of which may be
outside of the support of the current mixed action specified byms under θ(t).
This makes vi a useful tool to check the profitability of one-shot deviations
from the given strategy profile ms. We call the function v : A×Θ → RN

an ex-post reduced game.
If a machine strategy profile ms is a weakly belief-free equilibrium, in

each period t, players are taking mutual best replies for each (θ(t−1), a(t−
1)).12 Given (θ(t− 1), a(t− 1)), the machine strategy profile under consid-
eration provides some joint distribution of ω(t− 1), θ(t), and a(t), denoted
by r(ω(t − 1), θ(t), a(t)). Given a realization of ωi(t − 1), θi(t), and ai(t)
(interpreted as a recommended action) of this distribution r, player i must
be happy to choose ai(t). This can be regarded as a correlated equilibrium
of a Bayesian game, where types θ, recommended actions a, and some ad-
ditional information ω are generated by a joint distribution r(ω, θ, a), and
the ex-post payoff function is given by the ex-post reduced game vi(a|θ).

Definition 8 Probability distribution r over Ω × Θ × A is a Bayesian
correlated equilibrium of ex-post reduced game v when

∀i∀ai∀ωi∀θi∀a0i
X

a−i,ω−i,θ−i

vi(a|θ)r(ω, θ, a) ≥
X

a−i,ω−i,θ−i

vi(a
0
i, a−i|θ)r(ω, θ, a).

(9)
The set of Bayesian correlated equilibria of the ex-post reduced game v is
denoted by

BC(v) = {r ∈ ∆(Ω×Θ×A)|Condition (9) holds.} (10)

The defining condition (9) shows that BC is a convex set, which plays
an important role in what follows. The following notation clarifies how
r(ω(t− 1), θ(t), a(t)) is determined in the repeated game.
12This is because, under a machine strategy profile, previous history (a(1),ω(1), ..., a(t−

2),ω(t− 2)) affects the continuation strateies at time t only when it affects θ(t− 1).
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Definition 9 The state-action-signal distribution given θ(t − 1), a(t − 1)
under machine strategy profile ms is defined by

qms(ω(t− 1), θ(t), a(t)|θ(t− 1), a(t− 1)) =X
ω(t−1)

NY
i=1

ρi(ai(t)|θi(t))τ i(θi(t)|θi(t−1), ai(t−1),ωi(t−1))p(ω(t−1)|a(t−1)),

(11)
where ρi and τ i are the action choice and state transition rule of msi. Its
marginal distribution of (θ(t), a(t)) is the law of motion under ms and is
defined by

pms(θ(t), a(t)|θ(t−1), a(t−1)) ≡
X

ω(t−1)∈Ω
qms(ω(t−1), θ(t), a(t)|θ(t−1), a(t−1)).

(12)

Now I am ready to state my main characterization conditions.

Definition 10 An ex-post reduced game vi(a|θ), i = 1, ..., N is self-generating
if there exists a machine strategy profile ms (defined over states θ ∈ Θ) such
that

∀i∀a∀θ vi(a|θ) = (1− δ)gi(a) + δ
X
a0∈A

vi(a
0|θ0)pms(θ0, a0|θ, a) (13)

and
∀a∀θ qms(·, ·, ·|θ, a) ∈ BC(v), (14)

where qms, pms, and BC(v) are defined by (11), (12), and (10).

In contrast to the formulation in Section 3, where we considered a set U
of reduced games, here we consider a single function profile v. In Section
3, we needed to consider a set of reduced games to allow the possibility that
the one-period memory transition rule is time-dependent (hence a set of
reduced games {ut|t = 1, 2, ...} is associated with an equilibrium). Here, we
can confine our attention to a single function profile v, because state θ can
encode time (as θ = (bθ, t)) and a single function profile v(·|θ) can represent
potentially time-dependent ex-post reduced games.

Given an ex-post reduced game v = v(a|θ), let N(v) be the set of Nash
equilibrium payoff profiles of game g(a) = v(a|θ) for some θ. Suppose that
v is self-generating and w ∈ N(v) is obtained as a Nash equilibrium of game
g(a) = v(a|θ). Then, w is obtained as a machine strategy equilibrium where
the initial state is θ. Formally, we obtain the following characterization
result.
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Theorem 11 Let v be a self-generating ex-post reduced game, which is
bounded in the sense that there exists K > 0 such that |vi(a|θ)| < K for
all i, a, and θ. Then any w ∈ N(v) is a weakly belief-free equilibrium pay-
off profile. Conversely, any weakly belief-free equilibrium payoff profile is an
element of N(v), for some bounded self-generating ex-post reduced game v.

The proof is basically the same as in Section 3 and therefore omitted. Let
me just provide the basic logic of the proof. Condition (14) says that players
are always playing a Bayesian correlated equilibrium of the ex-post reduced
game after any history (on and off the path of play), and it implies that
one-shot deviations from the machine strategy profile do not pay. Hence,
the standard dynamic programming argument shows that players are always
choosing mutual best replies.

Remark 12 Given a weakly belief-free equilibrium machine strategy profile,
we can calculate the associated ex-post reduced game v(a|θ). The original
(pure or mixed) equilibrium payoff in the repeated game is given by a Nash
equilibrium of v(a|θ(1)), where θ(1) is the initial state profile of the given
machine strategies. However, the weakly belief-free requirement implies that
any Nash equilibrium payoff profile of v(a|θ) for any θ (not necessarily the
initial one) is also an equilibrium payoff profile of the repeated game. This
comes from the following fact. Consider the strategy profile defined by (i)
the initial action profile is an equilibrium of game g(a) = v(a|θ) and (ii) the
continuation play is given by the machine strategy profile. As the machine
strategy profile is weakly belief-free, the strategy profile thus constructed sat-
isfies the property that one-shot deviations are never profitable (hence it is
an equilibrium).

Remark 13 Theorem 11 can be extended to the case where there is a corre-
lation device at the beginning of the repeated game. It is also straightforward
to incorporate a public randomization device at each moment in time.

Example: The belief-free (hence by definition weakly belief-free) equi-
librium of Kandori and Obara (2006) (a private strategy equilibrium in a
imperfect public monitoring game) is an example of Theorem 1113. Unlike
the belief-free equilibrium in Ely and Valimaki (2002), this equilibrium does
not have the one-period memory property. Both Kandori and Obara (2006)
and Ely and Valimaki (2002) can be represented by a machine strategy pro-
file with two states Θi = {P,R}. In Ely and Valimaki (2002), distinct
13Constructing a weakly belief-free but not belief-free equilbrium in general strategies

is an important future research agenda.
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pure actions are played in different states (coupled with a stochastic state
transition function, which effectively implements a mixed action in each
period). Hence, the previous action can be identified with the previous
state14, and it completely determines (along with the private signal in the
previous period) the current action. This shows that Ely and Valimaki has
a one-period memory strategy. In contrast, in Kandori and Obara, there
is no one-to-one mapping between states and actions. In each state, the
same set of actions are played with positive probabilities. This implies that
the same action-signal pair (ai(t),ωi(t)) would lead to a different (mixed)
action in t + 1, depending on the current state θi(t). Hence Kandori and
Obara’s model does not employ one-period memory strategies, but it pro-
vides a belief-free equilibrium so that players are always playing an ex-post
equilibrium (a special case of Bayesian correlated equilibrium) of v(a|θ).

5 An Example: The Chicken Game in the Re-
peated Prisoners’ Dilemma

In this section, I present a simple example of a one-period memory belief-
free equilibrium, where the set U in our characterization (Definition 6) is a
singleton. This example shows that a weakly belief-free equilibrium can have
the following desirable properties: (i) it can be in very simple pure strategies,
(ii) players always have a strict incentive to follow the equilibrium action,
and (iii) it can outperform the equilibria identified by previous work. The
equilibrium in this example also has an interesting property that it ”embeds”
the chicken game (as the reduced game) in a repeated prisoner’s dilemma
game. The stage game has the following prisoner’s dilemma structure:

C D

C 1, 1 −1/6, 3/2
D 3/2,−1/6 0, 0

.

For computational purposes, I have normalized the payoffs in such a way
that the maximum and minimum payoffs are 1 and 0 respectively, but it
14Ely and Valimaki consider a prisoners’ dilemma game, and action C (resp. D) is

played in state R (resp. P ). When a player deviates, say in state R, to play D, we can
specify that the continuation strategy is given by the one where current state is P . (Hence,
the player behaves as if the current state were P , after deviating to D) By the belief-free
conditions, players are taking mutual best replies after such a deviation (guaranteeing
that the specified strategy profile constitutes a sequential equilibrium). Hence, in Ely
and Valimaki we can assume that players are following one-period memory strategies not
only on the path of play, but also after deviations.
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may be easier to consider

C D

C 6, 6 −1, 9
D 9,−1 0, 0

,

which is proportional to the first payoff table. Each player’s private signal
has binary outcomes, ωi = G,B, i = 1, 2. The signal profile distribution de-
pends on the current action profile and it is denoted by p(ω1,ω2|a1, a2). The
relationship between current actions and signals (the monitoring structure)
is as follows:

(C,C) =⇒
ω1Âω2 G B

G 1/3 1/3

B 1/3 0

(D,C) =⇒
ω1Âω2 G B

G 1/8 1/2

B 1/4 1/8

(C,D) =⇒
ω1Âω2 G B

G 1/8 1/4

B 1/2 1/8

(D,D) =⇒
ω1Âω2 G B

G 0 2/5

B 2/5 1/5

This set of distributions admits the following natural interpretation. When
both players cooperate, they can avoid a mutually bad outcome (B,B). If
one player defects, with a high probability (1/2), the defecting player enjoys
a good outcome (G) while the other player receives a bad one (B). Finally,
when both player defect, they cannot achieve a mutually good outcome
(G,G).

I have made some entries in the above tables equal to 0 (so that the
example has ”moving supports”) to simplify the analysis, but, as I will
formally show at the end of this section, this is inessential to the main results
(i.e., similar results are obtained even if I make those entries non-zero, small
numbers).

Let us consider the following simple (and intuitive) one-period memory
transition rule:

ai(t) =

½
C if ωi(t− 1) = G
D if ωi(t− 1) = B

. (15)
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The reduced game payoff for profile a, denoted ui(a), is defined to be the
average payoff when a is played in the initial period and then players fol-
low the above strategy. Since the transition rule is time-independent, the
reduced game is also time-independent. Let us denote the reduced game
payoffs by

C D

C x, x α,β

D β,α y, y

.

For example, (u1(C,D), u2(C,D)) = (α,β). Since the same reduced game
u is played in each period, the dynamic programming value equation in the
self-generation condition (5) reduces to a simple system of equations

∀i∀a ui(a) = (1− δ)g(a) + δ
X
a0∈A

ui(a
0)pm(a0|a),

where pm(a0|a) denotes the transition probability of current and subsequent
actions under our strategy (15) and the given monitoring structures. By
symmetry, this further reduces to a system of four equations with four un-
knowns: ⎧⎪⎪⎨⎪⎪⎩

x = (1− δ) + δ 13(x+ α+ β)
y = δ(15y +

2
5(α+ β))

α = (1− δ)(−16) + δ(18x+
1
4α+

1
2β +

1
8y)

β = (1− δ)32 + δ(18x+
1
2α+

1
4β +

1
8y)

.

For example, x = u1(C,C) is associated with current payoff 1 = g1(C,C),
and given the current action profile (C,C) and the transition rule (15), the
continuation payoff is x = u1(C,C), α = u1(C,D), or β = u1(D,C) with
probability 1/3. Hence we have the first equality x = (1−δ)×1+δ 13(x+α+
β). The rest admit similar interpretations. When δ = 0.99, for example,
we have the following solutions:⎧⎪⎪⎨⎪⎪⎩

x = 0.641 26
y = 0.627 89
α = 0.629 14
β = 0.642 5.

(16)

Note first that we have u1(D,C) = β > x = u1(C,C) and u1(C,D) = α >
y = u1(D,D), which means that the reduced game is a ”Chicken Game”,
where (D,C) and (C,D) are Nash equilibria. The high discount factor
is responsible for the fact that these four payoffs are close to each other.
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Figure 1: Reduced Games: From outer to inner, δ = 0, δ = 4/7, δ = 4/5,
δ = 0.99.
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This is because the transition rule (15) defines an irreducible and aperiodic
Markov chain over the stage game action profiles (C,C), (C,D), (D,C), and
(D,D), and the average payoff to player i given any initial action profile (i.e.,
x, y, α, or β) tends to, as δ → 1,

g∗ =
X
a

gi(a)μ
∗(a), (17)

where μ∗ is the unique (ergodic) stationary distribution of the Markov chain.
Figure 1 shows the reduced game payoffs for various values of discount

factor. By definition, the reduced game coincides with the Prisoner’s
Dilemma game (i.e., the stage game) when δ = 0. To get some intu-
ition about how the equilibrium works, it is important to note that the edge
connecting u(D,D) and u(D,C) has a negative slope when δ = 0. This
corresponds to the fact that player 2 can increase his payoff by deviating at
(D,C) (i.e., by moving form (D,C) to (D,D)). As we have seen, all four
payoff profiles of the reduced game tend to the single point (g∗, g∗) given
by (17), as δ → 1. Numerical computation shows that, when δ > 4/7, the
slope of the edge connecting u(D,D) and u(D,C) becomes positive (I will
provide some intuition for why this is the case shortly), and this implies that
player 2 has no incentive to deviate from (D,C). In other words, (D,C)
is now a Nash equilibrium of the reduced game (so is (C,D) by symmetry).
In summary, when δ > 4/7, the reduced game becomes a Chicken game,
which has two pure strategy Nash equilibria (D,C) and (C,D).

I will show that, when the discount factor is sufficiently large (specifically,
δ ≥ 0.989 54), the action profile distribution after any history becomes a
correlated equilibrium of the reduced game (hence the one-period memory
transition rule (15), coupled with a suitable initial action profile, is a weakly
belief-free equilibrium).

Now let us check the incentive constraints. Namely, we will examine
when the second requirement for self-generation (6) is satisfied. This is the
requirement that players always play a correlated equilibrium of the reduced
game after any history. Under our one-period memory strategy (15), the
joint distribution of current actions depends on the previous action profile
in the following way:

a(t− 1)=(C,C) =⇒
a1(t)Âa2(t) C D

C 1/3 1/3

D 1/3 0
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a(t− 1)=(D,C) =⇒
a1(t)Âa2(t) C D

C 1/8 1/2

D 1/4 1/8

a(t− 1)=(C,D) =⇒
a1(t)Âa2(t) C D

C 1/8 1/4

D 1/2 1/8

a(t− 1)=(D,D) =⇒
a1(t)Âa2(t) C D

C 0 2/5

D 2/5 1/5

I will show that, when the discount factor is sufficiently high, all these joint
distributions are correlated equilibria of the reduced (Chicken) game u.

Before going into the details, let me provide some intuition about how the
equilibrium in this example works. The above tables show that, once (C,D)
is played, (D,C) follows with a large probability, thereby punishing player
2 who initially played D. Note that player 1, who was cheated initially,
benefits from the transition. Hence the equilibrium strategy here provides
incentives by the transfer of continuation payoffs (taking away some con-
tinuation payoff from the deviator and giving it to the victim). As I will
elaborate on later, this is an essential mechanism to achieve efficiency in
repeated games with imperfect monitoring (Fudenberg, Levine and Maskin
(1994)). After (D,C) is played, the action profile largely goes back and
forth between (C,D) and (D,C). As the discount factor increases, this
provides a large impact on the average payoffs, and the reduced game payoff
set, which is a prisoners’ dilemma game payoff set when δ = 0, is "com-
pressed" in the northwest-southeast directions (see Figure 1). As a result,
the slope of the edge connecting u(D,D) and u(D,C) in Figure 1 becomes
positive, and the reduced game becomes a Chicken game for a large δ. Since
(C,D) and (D,C) are Nash equilibria of the Chicken game, a joint distribu-
tion of actions which places relatively large probabilities to these profiles can
be a correlated equilibrium. Our strategy, summarized in the tables above,
indeed has this property. Hence it can be a weakly-belief free equilibrium.

Let us now examine the incentive constraint (6) in detail. Note that the
reduced game is strategically equivalent to

1\2 C D

C 0, 0 α− y,β − x
D β − x,α− y 0, 0

(18)

(In general, a game gi(a), i = 1, ..., N is strategically equivalent to the game
gi(a) +Ki(a−i), which means that both games have the same best replies

22



and hence the same (Nash or correlated) equilibria.) For the reduced game
to be a chicken game, we need to have

x < β and y < α. (19)

The game (18) is in turn strategically equivalent to (just multiply the payoffs
by 1

β−x)

1\2 C D

C 0, 0 z, 1

D 1, z 0, 0

, (20)

where
z ≡ α− y

β − x.

Hence the correlated equilibria are completely characterized by this single
quantity z. Recall that, under transition rule (15), the strategy profile
distribution is given by

1\2 C D

C p(G,G|a) p(G,B|a)
D p(B,G|a) p(B,B|a)

, (21)

where a is the action profile in the previous period. I identify the condition
under which this is a correlated equilibrium of (20) (and therefore of the
original reduced game u) for all a.

In the general model in Section 3, I defined correlated equilibrium with
respect to joint distributions over (a,ω) (see (1)). In the equilibrium con-
sidered here, there is a one-to-one correspondence between a(= a(t)) and
ω(= ω(t− 1)) (see (15)), and as a result I can apply the standard definition
of correlated equilibrium with respect to distributions of a alone. Generally
speaking, a distribution over action profiles q(a) is a correlated equilibrium
of the game v, if15

∀i∀ai∀a0i
X
a−i

vi(a)q(a) ≥
X
a−i

vi(a
0
i, a−i)q(a).

Now I apply this condition for player i = 1, recommended action ai = C,
and a possible deviation a0i = D, where v is equal to the transformed reduced

15A standard argument shows that this is equivalent to

E [ui(ai, a−i)|ai] ≥ E ui(a
0
i, a−i)|ai .

See the explanation after condition (1).
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game (20). This condition is expressed as

vi(C,C)q(C,C) + vi(C,D)q(C,D) ≥ vi(D,C)q(C,C) + vi(D,D)q(C,D),

or
0 · q(C,C) + z · q(C,D) ≥ 1 · q(C,C) + 0 · q(C,D).

When the action distribution q(a) is given by table (21), this reduces to

p(G,B|a)z ≥ p(G,G|a). (22)

Similarly, we have the following incentive constraints for the proposed strat-
egy profile distribution to be a correlated equilibrium.

Condition for player 1 to choose D: p(B,G|a) ≥ p(B,B|a)z (23)

Condition for player 2 to choose C: p(B,G|a)z ≥ p(G,G|a) (24)

Condition for player 2 to choose D: p(G,B|a) ≥ p(B,B|a)z (25)

As we have p(G,B|a) 6= 0 and p(B,G|a) 6= 0, the correlated equilibrium
conditions (22) - (25) reduce to

min
a
min

½
p(G,B|a)
p(B,B|a) ,

p(B,G|a)
p(B,B|a)

¾
≥ z ≥ max

a
max

½
p(G,G|a)
p(G,B|a) ,

p(G,G|a)
p(B,G|a)

¾
(26)

with the understanding that p(G,B|a)p(B,B|a) ,
p(B,G|a)
p(B,B|a) =∞ > z when p(B,B|a) = 0.

Note that the minimum on the left hand side is attained by a = (D,C),
(C,D), and (D,D), and it is equal to 1/4

1/8 =
2/5
1/5 = 2. The maximum on the

right hand side is attained by a = (C,C), and it is equal to 1/3
1/3 = 1. Hence,

the current action profile distribution is always a correlated equilibrium
(given any action profile in the previous period) of the reduced game iff

2 ≥ z ≥ 1, (27)

and the incentive constraints (22) - (25) are satisfied with strict inequality
when 2 > z > 1. If δ = 0.99, this is indeed satisfied, because we have
z = α−y

β−x = 1. 002 7. By a simple numerical computation one can show that
the crucial equilibrium condition (27) is indeed satisfied when δ ≥ 0.989 54
(details can be found in Appendix C).

Note that the above analysis shows that the incentive constraint (26) is
satisfied with strict inequalities when δ = 0.99. This relationship is un-
changed if I slightly modify the signal structure so that p(ω1,ω2|a) is always
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strictly positive (because z = α−y
β−x is a continuous function of those para-

meters). In this sense, the example here is robust: All major conclusions
hold if I make p(ω1,ω2|a) strictly positive for all (ω1,ω2) and all a. More
generally, all major results here continue to hold even if we slightly perturb
the stage game payoffs, the signal distributions, or the discount factor.

Since the incentive constraints in (27) are satisfied with strict inequali-
ties, each player is always taking a strict best reply action (given the future
strategy profile). This is in sharp contrast to the equilibria obtained by
Ely and Valimaki (2002) or EHO (2005), whose essential feature is that at
least one player is indifferent between some actions. I would argue that the
weakly belief-free equilibrium identified here has certain advantages over
the belief-free equilibria. First, thanks to the strict incentives, the same
equilibrium strategy specified here (15) works for all near-by games. In
contrast, the mixing probability in a belief-free equilibrium is fine-tuned to
the structure of the game. If the payoff, discount factor, or monitoring
structure changes, the belief-free equilibrium strategy changes.

Secondly, Bhaskar (2000) argues that belief-free equilibria are unrealistic
because they may not be justified by the Harsanyi’s purification argument
(with independent perturbations to the stage payoffs). A follow-up paper
by Bhaskar, Mailath and Morris (2008) partially confirms this conjecture.
They consider one-period memory belief-free strategies a la Ely-Valimaki
in a perfect monitoring repeated prisoners’ dilemma game (note that the
Ely-Valimaki belief-free equilibrium applies to perfect as well as imperfect
private monitoring). They show that those strategies cannot be purified
by one-period memory strategies, but can be purified by infinite memory
strategies. They conjecture that purification fails for any finite memory
strategy (so that purification is possible, but only with substantially more
complex strategies). They also conjecture that similar results hold for the
imperfect private monitoring case. The equilibrium here is free from the
Bhaskar critique.

Finally, let me provide a welfare comparison between the weakly belief-
free equilibrium and belief-free equilibria in this example. The reduced game
u computed above is self-generating as a singleton set (i.e., U = {u} is self-
generating), and Theorem 7 and the comments thereafter show that any
Nash or correlated equilibrium of u can be a weakly belief-free equilibrium
payoff of the repeated game. In particular, since the reduced game is a
Chicken game, (D,C) and (C,D) are the pure strategy Nash equilibria of
u. This means that, starting with (D,C) (or (C,D)) and then following the
one-period memory transition rule (15) is a weakly belief-free equilibrium,
whose average payoff profile is u(D,C) (or u(D,C), respectively). Likewise,
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playing any mixed or correlated equilibrium of u in the first period, followed
by transition rule (15) is also a weakly belief-free equilibrium. To com-
pare these weakly belief-free equilibria with belief-free equilibria, I employed
EHO (2005)’s characterization to compute an upper bound of all belief-free
equilibrium payoffs in this example (Appendix A). I found that all points
u(C,C), u(D,C), u(C,D), and u(D,D) lie above the upper bound. Hence,
a fortiori, any equilibrium associated with u (that is, any weakly belief-free
equilibrium associated with the one-period memory strategy (15)) outper-
forms the belief-free equilibria in this example. In the next section, I will
provide a detailed explanation why the weakly belief-free equilibria outper-
form belief-free equilibria16. Let us summarize the results of this section
as follows:

Proposition 14 When δ ≥ 0.989 54, playing (D,C) or (C,D) in the first
period, followed by one-period memory transition rule (15) is a weakly belief-
free equilibrium of the repeated prisoners’ dilemma game defined in this sec-
tion. Furthermore, the equilibrium payoff profiles associated with those
equilibria lie above the Pareto frontier of the belief-free equilibrium payoffs.

6 Comparison Between Belief-Free andWeakly Belief-
Free Equilibria

In this section I provide some comparisons between belief-free and weakly-
belief free equilibria, in terms of the repeated prisoners’ dilemma game of the
previous section. First, I will show that the notion of a reduced game, intro-
duced in this paper to analyze weakly belief-free equilibria, is useful in under-
standing the essential properties of belief-free equilibria. The explanation
here reveals how weakly belief-free equilibrium generalizes the requirements
of belief-free equilibrium. Secondly, we elaborate on why weakly belief-free
equilibrium can outperform belief-free equilibria. Thirdly, I show that the
weakly belief-free equilibrium of the previous section has a better dynamic
stability property than belief-free equilibria. In particular, it is shown
that the weakly belief-free equilibrium strategies can invade a population
of belief-free equilibrium strategies (so that the latter is not evolutionarily
stable).

16The existing literature modified the concept of belief-free equilibrium by means of
review strategies and showed that full efficiency can be achieved under some conditions.
Appendix B shows that review strategies do not work in the example presented in this
section.
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Construction of Equilibria: The notion of reduced game is useful to
compare the construction of belief-free and weakly belief-free equilibria. A
leading example of a belief-free equilibrium is provided by Ely and Valimaki
(2002) for the repeated prisoners’ dilemma game with private monitoring.
They construct judiciously chosen one-period memory mixed strategies, so
that the reduced game has the following form:

C D

C R,R P,R

D R,P P, P

, R > P

Note that player 1’s payoff is completely determined by player 2’s action:
When 2 plays C, for example, player 1’s payoff is always R, irrespective of
1’s own action. The same is true for player 2’s payoffs. Hence, for any
realization of opponent’s action, a player is always indifferent between C
and D. This implies that any joint distribution of actions is a correlated
equilibrium of this reduced game, and, in particular, the judiciously chosen
mixed strategy equilibrium to induce this reduced game is indeed an equi-
librium. Moreover, since the prescribed strategy of a player in this reduced
game is always a best reply irrespective of the beliefs over the opponent’s
action, the equilibrium is completely belief-free. The present paper reveals
that this is a rather special way for players to follow a correlated equilibria
of the reduced game. One of the main messages of the present paper is
that weakly belief-free equilibria accommodate more general way to play a
correlated equilibrium of the reduced game.

Welfare Comparison: Next, I turn to the welfare comparison. Let us
examine how the best belief-free equilibrium payoffs (R,R) in the reduced
game above are determined. Those payoffs are associated with initial action
profile (C,C). In the belief-free equilibrium, player 1 has an incentive to
play C because a deviation to D induces player 2 to play D with a large
probability. Since monitoring is imperfect, even though (C,C) is played a
"bad" signal arises with positive probability and such a punishment is trig-
gered. Figure 2 (a) shows the directions of punishment in the belief-free
equilibrium. The figure shows that when one player is punished, the other
player’s payoff cannot be increased. This implies that the total payoff of the
players is reduced, and as a result, the belief-free equilibrium suffers from a
heavy welfare loss. On the other hand, if a player’s payoff is increased when
the opponent is punished, the loss of total payoff is mitigated (and, if done
correctly, the loss can completely vanish, as the Fudenberg-Levine-Maskin
(1994) folk theorem shows). The weakly belief-free equilibrium in the pre-
vious section embodies such transfers of continuation payoffs (although not
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u2

u1

(a) Belief‐Free Equilibirium

(C,D) (C,C)

(D,C)(D,D)

P R

u2

u1

(b) Weakly Belif‐Free Equilibrium

(C,C)
(C,D)

(D,C)(D,D)

Figure 2: Reduced Game Payoff Set and the Directions of Punishment

as perfectly as the Fudenberg-Levine-Maskin equilibria do), and therefore
it does better than the belief-free equilibria. The asymmetric punishment
mechanism is embodied in the following way. The best symmetric weakly
belief-free equilibrium in the example of the previous section is a correlated
equilibrium in the reduced "Chicken" game, which mixes (C,C), (C,D) and
(D,C). The major directions of punishment are shown in Figure 2 (b):
As we saw in the previous section, the equilibrium transition rule (15) to-
gether with our information structure p(ω|a) imply that players alternate
between (C,D) and (D,C) with a large probability. Hence, the weakly
belief-free equilibrium partially embodies the transfer of continuation pay-
offs, an essential tool to achieve efficiency in repeated games with imperfect
monitoring.

Dynamic Stability: Lastly, let me compare the belief-free and weakly
belief-free equilibrium strategies in terms of their dynamic stability. Namely,
I address their evolutionary stability. My argument is roughly summarized
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as follows. The belief-free equilibrium strategy has a property that any
strategy is a best reply against it. This makes the belief-free equilibrium
strategy susceptible to invasion by the weakly belief-free equilibrium strat-
egy. In contrast, the weakly belief-free equilibrium strategy specifies a strict
best reply in each period, and therefore it is immune to invasion. In what
follows, I will formally establish this claim.

Recall the standard definition of evolutionarily stable strategies (ESS)17.
Consider a symmetric two-person game, where π(s0, s) denotes a player’s
payoff when he and his opponents play strategies s0 and s respectively. A
strategy s is an evolutionarily stable strategy (ESS) if, for any other strategy
s0 6= s,

1. π(s, s) ≥ π(s0, s), and

2. π(s, s) = π(s0, s)⇒ π(s, s0) > π(s0, s0).

This is the condition that a population of s cannot be invaded by a small
fraction of players employing alternative strategy s0. After the invasion, the
population consists of a large fraction of s and a small fraction of s0. When
those strategies are randomly paired, the above two conditions ensures that
the expected payoff to s is strictly higher than that to s0 (and therefore
the former dominates the population, by means of imitation of the superior
strategy, for example). Now consider the belief-free and weakly belief free
equilibrium examined above. Consider first the situation where the belief-
free equilibrium strategy is the incumbent strategy s, which is invaded by
the weakly belief-free equilibrium strategy s0. Recall the crucial property of
the belief-free equilibrium strategy: against this strategy, a player is always
indifferent between C and D. In other words, any strategy is a best reply
(yielding the same payoff) against the belief-free equilibrium strategy. This
makes the belief-free equilibrium particularly susceptible to the invasion of
another strategy. Thus, we obtain the first part of Condition 2: π(s, s) =
π(s0, s). Since s0 is an equilibrium strategy, we have π(s, s0) ≤ π(s0, s0).18

Hence Condition 2 above is violated and the belief-free equilibrium is not an
ESS. In particular, it can be invaded by the weakly belief-free equilibrium.

In contrast, the weakly belief-free equilibrium strategy is an ESS. This
is essentially because a player always has a strict incentive to follow the
equilibrium action, and therefore an invasion by a small fraction of alter-
native strategies is impossible. To formally establish this claim, however,
17See Kandori (1997) and Weibull (1995) for accessible exposition.
18 In fact, the inequality is strict, because against the weakly belief-free equilibrium

strategy s0, player has a strict incentive to follow actions specified by s0.
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we need to pay attention to the following rather minor technical details.
Consider the situation where the weakly belief-free equilibrium strategy is
the incumbent strategy s, facing an invasion of another strategy s0. If s0

is the strategy which specifies a different action plan than s only after the
player’s own deviations, however, it yields the same payoff as s does. Hence
Condition 2 above is violated (π(s, s) = π(s0, s) and π(s, s0) = π(s0, s0)), and
we cannot establish that the weakly belief-free equilibrium strategy s is an
ESS. To exclude formally such an inessential technicality, let us cast the
question in terms of reduced normal forms. Two strategies of a player are
equivalent if they always yield the same payoff against any given strategy by
the opponent. The strategies s and s0 considered above, which only differ
after the player’s own deviations, are equivalent. When we regard a set of
strategies which are equivalent to each other (an equivalence class) as one
strategy, we obtain a game with a smaller strategy space. The resulting
game is called the reduced normal form game. Now let s be the weakly
belief-free equilibrium strategy in the reduced normal form. If s0 specifies
a different action on the path of play, it fares strictly worse than s, and we
have π(s0, s) < π(s, s) (because players have a strict incentive to follow the
equilibrium action in any period). It remains to show that any reduced
normal form strategy s0 6= s specifies a different action than s on the path
of play. This is true because the marginal distribution of private signals
has full support. This implies that the opponent’s deviations are never
detected, and the only unreached information sets of a player are the ones
that can be reached only by his own deviations.19 Hence, the weakly belief-
free equilibrium strategy s is an ESS in the reduced normal form, because
π(s0, s) < π(s, s) for any s0 6= s.

7 Concluding Remarks

Repeated games with imperfect private monitoring have a wide range of
applications but the set of all equilibria in this class of games has yet to
be characterized. The basic difficulty lies in the fact that players must
draw statistical inferences about the opponents’ behavior, which typically

19Suppose there were an information set which is reached by a deviation of the opponent.
Let s0 be a strategy specifying a different action on this information set than s does. Note
that s and s0 can be different strategies in the reduced normal form, because they can
yield different payoffs against a new strategy of the opponent that specifies the deviation
to reach that information set. Against the original strategy of the opponent s, however,
both s and s0 would yield the same payoff, and we could not obtain the desirable conclusion
π(s, s0) < π(s0, s0) (we would instead obtain π(s, s0) = π(s0, s0)).
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become increasingly more complex over time. The present paper provides a
new way of constructing an equilibrium in such a game, a weakly belief-free
equilibrium, which can outperform the equilibria identified by the previ-
ous work. The key requirement is that players continuation strategies are
always mutual best replies, after any realization of the history up to the ac-
tions in the last period. This requirement implies that players do not have
to draw complex statistical inferences about the opponents’ private histo-
ries, and the equilibrium conditions can be easily verified. I presented a
repeated prisoner’s dilemma game with private monitoring and showed that
a very simple strategy, to play C after a good private signal and to play D
after a bad private signal, can be a weakly belief-free equilibrium. This is
possibly one of the simplest equilibrium strategies which have been found
for a repeated game with private monitoring, and it was shown that this
equilibrium outperforms the equilibria identified in the previous literature.

The present paper may be extended in several directions. The example
of a weakly belief-free equilibrium I constructed for the repeated prisoners’
dilemma has one-period memory. It would be interesting to examine if we
can obtain a better equilibrium by using strategies with longer memory. It
is also possible to further weaken the weakly belief-free requirement. Note
that the belief-free equilibria, which played a major role in the existing
literature, imposes the belief-free condition on

(a−i(1),ω−i(1), ..., a−i(t− 2),ω−i(t− 2), a−i(t− 1),ω−i(t− 1))

(i.e., player i’s continuation strategy at time t should be a best reply for
any realization of (a−i(1),ω−i(1), ..., a−i(t − 1),ω−i(t − 1))). The weakly
belief-free equilibrium, in contrast, imposes the belief-free condition on

(a−i(1),ω−i(1), ..., a−i(t− 2),ω−i(t− 2), a−i(t− 1)),

where the last piece of information ω−i(t − 1) is excluded from the belief-
free requirement. We can progressively weaken the equilibrium concept by
imposing the belief-free requirement on

(a−i(1),ω−i(1), ..., a−i(t− 2),ω−i(t− 2)),

(a−i(1),ω−i(1), ..., a−i(t− 2)),
and so on. Another interesting research agenda is to conduct a laboratory
experiment to see if subjects actually play the weakly belief-free equilibrium
constructed for the repeated prisoners’ dilemma. The majority of equilibria
constructed in the existing literature are clever but fairly complex, and they
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may not be played in a lab experiment. In contrast, the equilibrium con-
structed in the present paper is very simple and intuitive, and players have
a strict incentive to follow the equilibrium behavior. Hence it may actually
be played by human subjects in an experiment.

8 Appendix A: An Upper Bound of the Belief-free
Equilibrium Payoffs in the Example

In this section, I compare the example in Section 5 with the belief-free equi-
librium payoffs identified by EHO (2005). To explain their characterization
of the belief-free equilibrium payoffs, I first introduce the notion of regime
A and an associated value MA

i . Using these concepts, I then find an upper
bound for the belief-free equilibrium payoffs.

A regime A = A1 × A2 is a product of non-empty subsets of the stage
game action sets, Ai ⊂ Ai, Ai 6= ∅, i = 1, 2. In each period of a belief-free
equilibrium, players typically have multiple best-reply actions and they are
played with positive probabilities. A regime corresponds to the set of such
actions. For each regime A, define a number MA

i as follows.

MA
i = sup vi

such that for some mixed action α−i whose support is A−i
and xi : A−i ×Ω−i → R+

vi ≥ g(ai,α−i)−
X

a−i,ω−i

xi(a−i,ω−i)p−i(ω−i|ai, a−i)α−i(a−i)

for all ai with equality if ai ∈ Ai,

where p−i(ω−i|ai, a−i) is the marginal distribution of ω−i given action profile
(ai, a−i). Intuitively, the positive number xi represents the reduction in
player i’s future payoffs. Note that a belief-free equilibrium has the property
that player i’s payoff is solely determined by the opponent’s strategy. This
is why the reduction in i’s future payoffs, xi, depends the opponent’s action
and signal (a−i,ω−i). Note also that the opponent’s action a−i is restricted
to the component A−i of the current regime A = Ai ×A−i. The above set
of inequalities ensures that player i’s best reply actions in the current period
correspond to set Ai, a component of the regime A = Ai×A−i. Hence, the
value MA

i is closely related to the best belief-free payoff when the current
regime is A (a more precise explanation will be given below).

Now let V ∗ be the limit set of belief-free equilibrium payoffs when δ → 1.
EHO (2005) provides an explicit formula to compute V ∗. For our purpose
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here, I only sketch the relevant part of their characterization to obtain a
bound for V ∗. In Section 4.1, EHO partitioned all games into three classes,
the positive, the negative, and the abnormal cases (for our purpose here, we
do not need to know their definitions). Their Proposition 6 shows that the
abnormal case obtains only if one of the players has a dominant action in the
stage game yielding the same payoff against all actions of the other player.
Clearly, this is not the case in our example with the prisoner’s dilemma
stage game, so our example is in either the positive or negative case20. If it
is in the negative case, EHO’s Proposition 5 shows that the only belief-free
equilibrium is the repetition of the stage game Nash equilibrium, yielding
(0, 0) in our example.

If our example is in the positive case, Proposition 5 in EHO implies that
the limit set of belief-free equilibrium payoffs can be calculated as follows:

V ∗ =
[
p

Y
i=1,2

∙P
A
p(A)mAi ,

P
A
p(A)MA

i

¸
, (28)

where mA
i is some number (for our purpose here, we do not need to know its

definition) and p is a probability distribution over regimes A. The union is
taken with respect to all probability distributions p such that the intervals in
the above formula (28) are well defined (i.e.,

P
A p(A)mAi ≤

P
A p(A)MA

i ,
i = 1, 2). The point to note is that V ∗ is a union of product sets (rectangles),
and the efficient point (upper-right corner) of each rectangle is a convex
combination of (MA

1 ,M
A
2 ).

The above characterization (28) of V ∗ implies, in the positive case, the
belief-free equilibrium payoffs satisfy the following bound

(v1, v2) ∈ V ∗ =⇒ v1 + v2 ≤ maxA MA
1 +M

A
2 , (29)

where maximum is taken over all possible regimes (i.e., for all A = A1×A2
such that Ai ⊂ Ai, Ai 6= ∅, i = 1, 2).

In what follows, I estimateMA
1 +M

A
2 for each regimeA. In our example,

Ai = {C,D}, so that Ai = {C}, {D}, or {C,D}. Before examining each
regime, I first derive some general results. Consider a regime A where
C ∈ Ai. In this case, the incentive constraint in the definition of MA

i

20With some calculation, we can determine which case applies to our example, but this
is not necessary to derive our upper bound payoff.
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reduces to

vi = g(C,α−i)−
X

a−i,ω−i

xi(a−i,ω−i)p−i(ω−i|C, a−i)α−i(a−i) (30)

≥ g(D,α−i)−
X

a−i,ω−i

xi(a−i,ω−i)p−i(ω−i|D,a−i)α−i(a−i). (31)

This inequality (31) can be rearranged asX
a−i,ω−i

xi(a−i,ω−i)p−i(ω−i|C, a−i)
µ
p−i(ω−i|D,a−i)
p−i(ω−i|C, a−i)

− 1
¶
α−i(a−i)

≥ g(D,α−i)− g(C,α−i). (32)

Now let

L∗ = max
ω−i,a−i

p−i(ω−i|D, a−i)
p−i(ω−i|C, a−i)

be the maximum likelihood ratio to detect player i’s deviation from C to D.
The preceding inequality (32) and L∗ − 1 > 0 imply21X

a−i,ω−i

xi(a−i,ω−i)p−i(ω−i|C, a−i)α−i(a−i) ≥
g(D,α−i)− g(C,α−i)

L∗ − 1 .

Plugging this into the definition (30) of vi, we obtain

vi ≤ g(C,α−i)−
g(D,α−i)− g(C,α−i)

L∗ − 1 .

This is essentially the formula identified by Abreu, Milgrom and Pearce
(1991). The reason for welfare loss (the second term on the right hand
side), is that players are sometimes punished simultaneously in belief-free
equilibria. The welfare loss associated with simultaneous punishment was
originally pointed out by Radner, Myerson, and Maskin (1986). Recall that
MA
i is obtained as the supremum of vi with respect to xi and α−i whose

support is A−i. (Note that the right hand side of the above inequality, in
contrast, does not depend on xi.) Hence, we have

MA
i ≤ sup g(C,α−i)−

g(D,α−i)− g(C,α−i)
L∗ − 1 , (33)

21Note that, as long as player i’s action affects the distribution of the opponent’s signal
(which is certainly the case in our example), there must be some ω−i which becomes more
likely when player i deviates from C to D. Hence, we have L∗ > 1.
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where the supremum is taken over all α−i whose support is A−i.
Now we calculate the maximum likelihood ratio L∗ and determine the

right hand side of the above inequality (33). In our example, when a−i =
C, maxω−i

p−i(ω−i|D,a−i)
p−i(ω−i|C,a−i) is equal to (as our example is symmetric, consider

−i = 2 without loss of generality)

p2(ω2 = B|D,C)
p2(ω2 = B|C,C)

=
1
2 +

1
8

1/3
=
15

8
.

When a−i = D, maxω−i
p−i(ω−i|D,a−i)
p−i(ω−i|C,a−i) is equal to

p2(ω2 = B|D,D)
p2(ω2 = B|C,D)

=
2/5 + 1/5

1/4 + 1/8
=
8

5
.

As the former is larger, we conclude L∗ = 15
8 . Plugging this into (33), we

obtain the following upper bounds of MA
i .

1. When C ∈ Ai and A−i = {C},

MA
i ≤ g(C,C)− g(D,C)− g(C,C)15

8 − 1

= 1− 1/2
15
8 − 1

=
3

7
.

2. When C ∈ Ai and A−i = {D},

MA
i ≤ g(C,D)− g(D,D)− g(C,D)15

8 − 1

= −1
6
− 1/6

15
8 − 1

= − 5
14
.

3. When C ∈ Ai and A−i = {C,D}, the larger upper bound in the above
two cases applies, so that we have

MA
i ≤

3

7
.

Given those bounds, we are ready to estimateMA
1 +M

A
2 for each regime

A.
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Case (i), where C ∈ Ai for i = 1, 2: The above analysis (Cases 1 and 3)
shows

MA
1 +M

A
2 ≤

6

7
.

Case (ii), where C ∈ Ai and A−i = {D}: Our Case 2 shows MA
i ≤ − 5

14 .
In contrast, MA

−i is simply achieved by x−i ≡ 0 (as D is the dominant
strategy in the stage game) so that

MA
−i = sup

αi
g(D,αi) = g(D,C) =

3

2
.

Hence, we have

MA
1 +M

A
2 ≤

3

2
− 5

14
=
8

7
.

Case (iii), A = {D} × {D}: Since D is the dominant action in the stage
game, MA

i is achieved by xi ≡ 0. Moreover, the opponent’s action is re-
stricted to A−i = {D}, so that we have MA

i = g(D,D) = 0. Hence,

MA
1 +M

A
2 = 0.

Let me summarize our discussion above. If our example is in the negative
case as defined by EHO, the only belief-free equilibrium payoff is (0, 0).
Otherwise, our example is in the positive case, where the sum of belief-free
equilibrium payoffs v1 + v2 (in the limit as δ → 1) is bounded above by the
maximum of the upper bounds found in Cases (i)-(iii), which is equal to 8

7 .
Altogether, those results show that any limit belief-free equilibrium payoff
profile (as δ → 1) (v1, v2) ∈ V ∗ satisfies v1 + v2 ≤ 8

7 .
To complete our argument, I now examine the belief free equilibrium

payoffs for a fixed discount factor δ < 1. Let V (δ) be the set of belief-
free equilibrium payoff profiles for discount factor δ < 1. The standard
argument22 shows that this is monotone increasing in δ (i.e. V (δ) ⊂ V (δ0)
if δ < δ0). Hence, we have V (δ) ⊂ V ∗, so that for any discount factor δ,
22The proof is as follows. Suppose we terminate the repeated game under δ0 > δ

randomly in each period with probability 1 − δ
δ0 and start a new game (and repeat this

procedure). In this way, we can decompose the repeated game under δ0 into a series of
randomly terminated repeated games, each of which has effective discount factor equal
to δ0 × δ

δ0 = δ. Hence, any equilibrium (average) payoff under δ can also be achieved
under δ0 > δ. This argument presupposes that public randomization is available (to
terminate the game). Even without public radomization, however, our conclusion V (δ) ⊂
V ∗ also holds, because (i) the set of belief-free payoff profiles V (δ) is smaller without
public randomization and (ii) the same limit payoff set V ∗ obtains with or without public
randomization (see the online appendix to EHO (2004)).
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all belief-free equilibrium payoffs (v1, v2) ∈ V (δ) satisfy v1 + v2 ≤ 8
7 . Now

recall that in our example, our one-period memory transition rule (15) is an
equilibrium if δ ≥ 0.989 54, with reduced game given by

C D

C x, x α,β

D β,α y, y

. (34)

The numerical analysis in Appendix C shows x, y,α,β > 0.6 for δ ≥
0.989 54. Hence, the total payoff in any entry in our reduced game pay-
off table (34) exceeds 1.2, which is larger than the upper bound for the total
payoffs associated with the belief-free equilibria, 87 ≈ 1.14. This implies that
all of our equilibria lie above the Pareto frontier of the belief-free equilibrium
payoff set.

9 Appendix B: The Review Strategy Equilibria in
the Example

Matsushima (2004) shows a larger payoff set can be sustained by extending
the idea of the belief-free equilibrium by means of review strategies. A review
strategy equilibrium treats T consecutive stage games as if they were a single
stage game, or a block stage game, and applies the belief-free equilibrium
technique to the sequence of such block stage games. Matsushima showed
that, under certain conditions, approximate efficiency can be obtained by
the review strategies, even if the observability is quite limited. This is
substantially generalized in a recent paper by Fong, Gossner, Horner and
Sannikov (2008). In this section, I show that their review strategies do not
work in my example.

Matsushima showed that approximate efficiency can be achieved by re-
view strategies in repeated prisoners’ dilemma games, provided that the
private signals are independently distributed conditional on the action pro-
file and an unobservable common shock. This requirement is expressed
as

p(ω1,ω2|a) =
X
θ∈Θ

q1(ω1|a1, a2, θ)q2(ω2|a1, a2, θ)f(θ|a1, a2), (35)

where θ ∈ Θ is the hidden common shock, and for all i and ai,

qi(·|ai, a−i, θ), for a−i ∈ A−i and θ ∈ Θ, are linearly independent.

The latter requirement is satisfied only if |Ωi| ≥ |A−i|× |Θ|. Since we have
|Ωi| = |A−i| = 2 in our example, the requirement is satisfied only if |Θ| = 1.
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In such a case, the first requirement (35) implies that the private signals
are conditionally independent p(ω1,ω2|a) = q1(ω1|a1, a2)q2(ω2|a1, a2), and
this is clearly not the case in our example. Hence, Matsushima’s review
strategy results do not apply to our example.

Although Matsushima’s conditions admit a clear meaning (conditional
independence on a hidden common shock), generically it is not satisfied in
the space of monitoring structures. Fong, Gossner, Horner and Sannikov
(2008) show that efficiency is approximately achieved in repeated prisoners’
dilemma games under a different set of assumptions, which are satisfied by
a positive measure of monitoring structures. A key assumption is their
Assumption 2, which they call "positively correlated scores". In the two-
player case, it reduces to the following requirements. Label one signal of
player i as 1i where, for every action of player i, 1i is always at least as
likely when player j 6= i plays C than when player j plays D . The signal
1i can then be interpreted as a “good” signal about j’s cooperation. It
is straightforward to check that in my example, the good signal 1i indeed
corresponds to ωi = G. In this case, they state that their Assumption 2
reduces to the requirement that good signals are positively correlated when
both players cooperate, i.e.

Pr(ωi = G|C,C,ωj = G) > Pr(ωi = G|C,C).

In my example, the joint distribution of private signals given action profile
(C,C) is

ω1Âω2 G B

G 1/3 1/3

B 1/3 0

,

and obviously good signals are not positively correlated. (We see that their
condition is violated because Pr(ωi = G|C,C,ωj = G) = 1/2 < Pr(ωi =
G|C,C) = 2/3.) Hence we conclude that their efficiency results in review
strategies, as they stand, do not apply to my example.

10 Appendix C: The Reduced Game Payoffs in the
Example for a Large Discount Factor

By numerical calculation, I show that (15) can be a weakly belief-free equi-
librium transition rule when δ ≥ 0.989 54. I also show that, for this range,
all equilibrium payoffs dominate the belief-free equilibria. All numerical
analysis in this sections were implemented by Maple. The reduced game
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payoffs in table (34) are obtained as a solution to the system of dynamic
programming equations

⎧⎪⎪⎨⎪⎪⎩
x = (1− δ) + δ 13(x+ α+ β)
y = δ(15y +

2
5(α+ β))

α = (1− δ)(−16) + δ(18x+
1
4α+

1
2β +

1
8y)

β = (1− δ)32 + δ(18x+
1
2α+

1
4β +

1
8y)

.

We obtain

x = 1
3
7δ2+91δ−180
17δ−60 , β = −16

7δ3+285δ2−1632δ+2160
(17δ−60)(4+δ) , y = 2

3 (7δ − 48)
δ

17δ−60 , and

α = −16
1448δ−395δ2−240+7δ3

(17δ−60)(4+δ) .

Recall that the crucial equilibrium condition in Section 5 is 2 ≥ z ≥ 1, where
z = α−y

β−x . Numerical computation shows that one of the roots of equation
z(δ) = 1 is δ = 0.989 54, and the following graph shows that 2 ≥ z ≥ 1 for
0.989 54 ≤ δ < 1.

Plotting z = α−y
β−x :

0.990 0.992 0.994 0.996 0.998 1.000
0.90

0.95

1.00

1.05

1.10

delta

z

Now I show that all reduced game payoffs x = u1(C,C) = u2(C,C), α =
u1(C,D) = u2(D,C), β = u1(D,C) = u2(C,D), and y = u1(D,D) =
u2(D,D) are strictly greater than 0.6 when 0.989 54 ≤ δ. Hence, the total
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payoff in any equilibrium in our reduced game exceeds 1.2, which is larger
than the upper bound for the total payoffs associated with all belief-free
equilibria, 87 ≈ 1.14 (see Appendix A). This completes my claim that all
of our equilibria lie above the Pareto frontier of the belief-free equilibrium
payoff set.

Plotting x(δ) = 1
3
7δ2+91δ−180
17δ−60

0.980 0.985 0.990 0.995 1.000
0.60

0.62

0.64

0.66

0.68

0.70

delta

x

Plotting y(δ) = 2
3 (7δ − 48)

δ
17δ−60

0.980 0.985 0.990 0.995 1.000
0.60

0.62

0.64

0.66

0.68

0.70

delta

y

Plotting α(δ) = −16
1448δ−395δ2−240+7δ3

(17δ−60)(4+δ)
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0.980 0.985 0.990 0.995 1.000
0.60

0.62

0.64

0.66

0.68

0.70

delta

alpha

Plotting β(δ) = β = −16
7δ3+285δ2−1632δ+2160

(17δ−60)(4+δ)

0.980 0.985 0.990 0.995 1.000
0.60

0.62

0.64

0.66

0.68

0.70

delta

beta

Hence, we have numerically confirmed that x, y,α,β > 0.6 holds for δ ≥
0.989 54.
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